Funkcje mięśni | Functions of Muscles

Tooltip .tooltip { position: relative; cursor: pointer; text-decoration: none; border-bottom: 1px dashed rgba(0, 0, 0, 0.6); } .tooltip::before { content: attr(data-tooltip); position: absolute; top: -40px; /* Trochę niżej nad słowem */ left: 50%; /* Wyśrodkowanie */ transform: translateX(-50%); background-color: rgba(255, 255, 255, 0.9); color: #333; padding: 6px 12px; border-radius: 8px; white-space: nowrap; opacity: 0; visibility: hidden; transition: opacity 0.3s ease, visibility 0.3s ease; font-family: ‘Arial’, sans-serif; font-size: 14px; box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.1); z-index: 10; } .tooltip:hover::before { opacity: 1; visibility: visible; } document.addEventListener(‘DOMContentLoaded’, function () { const wordsToTooltip = { “Muscular system”: “Układ mięśniowy”, “Gross physical movements”: “Ogólne ruchy ciała (motoryka duża)”, “Physiological functions”: “Funkcje fizjologiczne”, “Skeletal muscles”: “Mięśnie szkieletowe”, “Smooth muscles”: “Mięśnie gładkie”, “Cardiac muscles”: “Mięsień sercowy”, “Homeostasis”: “Homeostaza”, “Voluntary movement”: “Ruch dowolny”, “Locomotion”: “Lokomocja (przemieszczanie się)”, “Somatic nervous system”: “Somatyczny układ nerwowy”, “Tendons”: “Ścięgna”, “Joint Movement”: “Ruch w stawie”, “Biceps brachii”: “Mięsień dwugłowy ramienia”, “Triceps brachii”: “Mięsień trójgłowy ramienia”, “Antagonistically”: “Antagonistycznie (przeciwnie)”, “Flexion”: “Zgięcie”, “Extension”: “Wyprost”, “Gross Motor Skills”: “Motoryka duża”, “Fine Motor Skills”: “Motoryka mała”, “Core Muscles”: “Mięśnie głębokie (mięśnie posturalne)”, “Erector spinae”: “Prostownik grzbietu”, “Rectus abdominis”: “Mięsień prosty brzucha”, “Obliques”: “Mięśnie skośne brzucha”, “Antigravity Muscles”: “Mięśnie antygrawitacyjne”, “Gastrocnemius”: “Mięsień brzuchaty łydki”, “Balance Control”: “Kontrola równowagi”, “Cardiac Muscle Contractions”: “Skurcze mięśnia sercowego”, “Sinoatrial node (SA node)”: “Węzeł zatokowo-przedsionkowy (węzeł SA)”, “Venous Return Assistance”: “Wsparcie powrotu żylnego”, “Venous pooling”: “Zastój żylny”, “Peristalsis”: “Perystaltyka”, “Vasoconstriction”: “Zwężenie naczyń krwionośnych (wazokonstrykcja)”, “Vasodilation”: “Rozszerzenie naczyń krwionośnych (wazodylatacja)”, “Sphincter Control”: “Kontrola zwieraczy”, “Lower esophageal sphincter”: “Dolny zwieracz przełyku”, “Anal sphincter”: “Zwieracz odbytu”, “Thermoregulation”: “Termoregulacja”, “Shivering”: “Dreszcze (drżenie mięśniowe)”, “ATP”: “ATP (adenozynotrójfosforan)”, “Diaphragm”: “Przepona”, “Thoracic cavity”: “Jama klatki piersiowej”, “Intercostal Muscles”: “Mięśnie międzyżebrowe”, “Accessory Muscles”: “Mięśnie pomocnicze oddechowe”, “Sternocleidomastoid”: “Mięsień mostkowo-obojczykowo-sutkowy”, “Scalene muscles”: “Mięśnie pochyłe”, “Withdrawal Reflex”: “Odruch cofania”, “Corneal Reflex”: “Odruch rogówkowy”, “Gag reflex”: “Odruch wymiotny”, “Orbicularis oculi muscles”: “Mięśnie okrężne oka”, “Pharyngeal muscles”: “Mięśnie gardłowe”, “Glycogen Storage”: “Magazynowanie glikogenu”, “ATP Production”: “Produkcja ATP”, “Mitochondria”: “Mitochondria”, “Aerobic metabolic pathways”: “Tlenowe szlaki metaboliczne”, “Anaerobic metabolic pathways”: “Beztlenowe szlaki metaboliczne”, “Endocrine Interactions”: “Interakcje endokrynne”, “Myokines”: “Miokiny”, “Irisin”: “Iryzyna”, “Browning of adipose tissue”: “Brunatnienie tkanki tłuszczowej”, “GLUT4 translocation”: “Translokacja GLUT4”, “Insulin Sensitivity”: “Wrażliwość na insulinę”, “Hypertrophy”: “Hipertrofia (przerost mięśni)”, “Satellite cells”: “Komórki satelitarne”, “Capillary density”: “Gęstość naczyń włosowatych”, “Oxidative capacity”: “Zdolność oksydacyjna”, “Muscle protein synthesis”: “Synteza białek mięśniowych”, “Microtears”: “Mikrouszkodzenia”, “Amino acids”: “Aminokwasy”, “Calcium absorption”: “Wchłanianie wapnia”, “Electrolyte balance”: “Równowaga elektrolitowa”, “Muscle contraction efficiency”: “Efektywność skurczu mięśni”, “Muscle atrophy”: “Zanik mięśni”, “Ergonomics”: “Ergonomia”, “Repetitive strain injuries”: “Urazy wynikające z powtarzalnych przeciążeń”, “Weightlifting”: “Podnoszenie ciężarów”, “Muscle hypertrophy”: “Hipertrofia mięśniowa”, “Flexibility”: “Elastyczność (giętkość mięśni)”, “Degenerative conditions”: “Choroby zwyrodnieniowe”, “Deficiencies”: “Niedobory”, “Health check-ups”: “Badania kontrolne”, “Cramps”: “Skurcze”, “Preventive healthcare”: “Profilaktyka zdrowotna”, “Stretching”: “Rozciąganie”, “Resistance training”: “Trening oporowy”, “Prolonged inactivity”: “Długotrwała bezczynność”, “Nutritional factors”: “Czynniki żywieniowe”, “Regular exercise”: “Regularna aktywność fizyczna”, “Hydration”: “Nawodnienie”, “Maintaining posture”: “Utrzymywanie postawy”, “Generating heat”: “Wytwarzanie ciepła”, “Quadriceps”: “Mięsień czworogłowy uda”, “Hamstrings”: “Mięśnie kulszowo-goleniowe”, “Facial region”: “Obszar twarzy”, “Semi-contracted state”: “Stan półskurczu”, “Muscle tone”: “Napięcie mięśniowe”, “Core”: “Mięśnie głębokie (core)”, “Upright posture”: “Postawa wyprostowana”, “Joint stability”: “Stabilność stawu”, “Joint”: “Staw”, “Muscle tension”: “Napięcie mięśni”, “Involuntary rhythmic contractions”: “Mimowolne rytmiczne skurcze”, “Pacemaker”: “Rozrusznik (w sercu)”, “Propel”: “Napędzać”, “Stomach”: “Żołądek”, “Intestines”: “Jelita”, “Bladder”: “Pęcherz moczowy”, “Blood vessels”: “Naczynia krwionośne”, “Contractions”: “Skurcze”, “Digestion”: “Trawienie”, “Absorption”: “Wchłanianie”, “Blood pressure”: “Ciśnienie krwi”, “Sphincters”: “Zwieracze”, “Contracts”: “Kurczy się”, “Stimuli”: “Bodźce”, “Blink Reflex”: “Odruch mrugania”, “Startle Reflex”: “Odruch zaskoczenia”, “Cough Reflex”: “Odruch kaszlowy”, “Adipose tissue”: “Tkanka tłuszczowa”, “Anti-inflammatory agents”: “Środki przeciwzapalne”, “Tissue repair”: “Naprawa tkanek”, “Uptake of glucose”: “Pobór glukozy”, “Capacity for adaptation and recovery”: “Zdolność do adaptacji i regeneracji”, “Endurance Improvements”: “Poprawa wytrzymałości”, “Rest and Repair”: “Odpoczynek i regeneracja”, “Resilience”: “Odporność (wytrzymałość)”, “Fatigue”: “Zmęczenie” }; // Normalize keys in the dictionary const normalizedWordsToTooltip = {}; for (const [key, value] of Object.entries(wordsToTooltip)) { const cleanedKey = key.replace(/(.*?)/g, ”).trim(); // Remove anything in parentheses normalizedWordsToTooltip[cleanedKey.toLowerCase()] = value; } function processNode(node) { if (node.nodeType === Node.TEXT_NODE && node.nodeValue.trim()) { let content = node.nodeValue; // Regex to match only the main words (ignores parentheses) const regex = new RegExp( `b(${Object.keys(normalizedWordsToTooltip).join(‘|’)})b`, ‘gi’ ); if (regex.test(content)) { const wrapper = document.createElement(‘span’); wrapper.innerHTML = content.replace(regex, (match) => { const tooltip = normalizedWordsToTooltip[match.toLowerCase().trim()]; return `${match}`; }); node.replaceWith(wrapper); } } else if (node.nodeType === Node.ELEMENT_NODE) { Array.from(node.childNodes).forEach(processNode); } } document.querySelectorAll(‘body *:not(script):not(style)’).forEach((element) => { Array.from(element.childNodes).forEach(processNode); }); });Podświetlanie tekstu z notatkami body { margin: 0; padding: 0; font-family: Arial, sans-serif; } .highlight { background-color: #cce7ff; /* Highlight color without notes */ position: relative; display: inline; } .highlight.with-note { background-color: #ffeb3b; /* Highlight color with notes */ } .note-box { position: absolute; background-color: #f9f9f9; color: #333; font-size: 14px; line-height: 1.6; padding: 10px 15px; border: 1px solid #ddd; border-radius: 5px; box-shadow: 0 2px 5px rgba(0, 0, 0, 0.2); max-width: 250px; z-index: 1000; white-space: normal; text-align: left; display: none; /* Hidden by default */ } .note-controls { position: absolute; top: -30px; right: -30px; display: flex; gap: 10px; z-index: 10; opacity: 0; pointer-events: none; transition: opacity 0.3s; } .note-controls.visible { opacity: 1; pointer-events: all; } .note-controls span { cursor: pointer; background-color: gray; color: white; padding: 5px 10px; border-radius: 5px; font-size: 16px; font-weight: bold; } .note-controls span:hover { background-color: darkgray; } document.addEventListener(“DOMContentLoaded”, () => { /** * Checks if an element is a header. */ const isHeaderElement = (node) => { while (node) { if (node.nodeType === 1 && node.tagName.match(/^H[1-5]$/)) { return true; } node = node.parentNode; } return false; }; /** * Checks if an element is inside a table cell. */ const isInsideTable = (node) => { while (node) { if (node.tagName === “TD” || node.tagName === “TH”) { return node; } node = node.parentNode; } return null; }; /** * Checks if an element belongs to the same list item. */ const isWithinSameListItem = (selection) => { if (selection.rangeCount === 0) return false; const range = selection.getRangeAt(0); const startContainer = range.startContainer; const endContainer = range.endContainer; const getClosestListItem = (node) => { while (node) { if (node.nodeType === 1 && node.tagName === “LI”) { return node; } node = node.parentNode; } return null; }; const startListItem = getClosestListItem(startContainer); const endListItem = getClosestListItem(endContainer); // Ensure selection is within the same list item return startListItem === endListItem; }; /** * Validates the selection. * Ensures the selection is within a single header, table cell, or list item. */ const isSelectionValid = (selection) => { if (selection.rangeCount === 0) return false; const range = selection.getRangeAt(0); const startContainer = range.startContainer; const endContainer = range.endContainer; const startInHeader = isHeaderElement(startContainer); const endInHeader = isHeaderElement(endContainer); // Block selection spanning headers if (startInHeader !== endInHeader) { return false; } const startCell = isInsideTable(startContainer); const endCell = isInsideTable(endContainer); // Block selection spanning table cells if (startCell && endCell && startCell !== endCell) { return false; } // Block selection spanning multiple list items if (!isWithinSameListItem(selection)) { return false; } return true; }; /** * Highlights the selected text. */ const wrapTextWithHighlight = (range) => { const fragment = range.extractContents(); const highlight = document.createElement(“span”); highlight.className = “highlight”; highlight.appendChild(fragment); range.insertNode(highlight); const noteControls = document.createElement(“div”); noteControls.className = “note-controls visible”; const editNote = document.createElement(“span”); editNote.textContent = “✎”; editNote.title = “Edit note”; noteControls.appendChild(editNote); const removeHighlight = document.createElement(“span”); removeHighlight.textContent = “x”; removeHighlight.title = “Remove highlight”; noteControls.appendChild(removeHighlight); highlight.style.position = “relative”; highlight.appendChild(noteControls); let noteBox = null; const updateNotePosition = () => { const rect = highlight.getBoundingClientRect(); if (noteBox) { noteBox.style.top = `${rect.height}px`; noteBox.style.left = `${rect.width / 2}px`; } }; const hideControlsAndNoteAfterDelay = () => { setTimeout(() => { noteControls.classList.remove(“visible”); if (noteBox) noteBox.style.display = “none”; }, 3000); }; // Show controls for 3 seconds after highlighting hideControlsAndNoteAfterDelay(); highlight.addEventListener(“click”, () => { noteControls.classList.add(“visible”); if (noteBox) noteBox.style.display = “block”; hideControlsAndNoteAfterDelay(); }); editNote.addEventListener(“click”, () => { const noteText = prompt(“Add or edit a note:”, noteBox?.textContent || “”); if (noteText) { if (!noteBox) { noteBox = document.createElement(“div”); noteBox.className = “note-box”; highlight.appendChild(noteBox); } noteBox.textContent = noteText; noteBox.style.display = “block”; highlight.classList.add(“with-note”); updateNotePosition(); hideControlsAndNoteAfterDelay(); } }); removeHighlight.addEventListener(“click”, () => { const parent = highlight.parentNode; while (highlight.firstChild) { parent.insertBefore(highlight.firstChild, highlight); } parent.removeChild(highlight); if (noteBox) noteBox.remove(); }); }; /** * Handles the mouseup event to validate and apply highlighting. */ document.body.addEventListener(“mouseup”, () => { const selection = window.getSelection(); if (selection.rangeCount > 0 && selection.toString().trim()) { if (!isSelectionValid(selection)) { alert(“Zaznaczenie musi być w obrębie jednego akapitu, komórki tabeli lub punktu listy!”); selection.removeAllRanges(); return; } const range = selection.getRangeAt(0); wrapTextWithHighlight(range); selection.removeAllRanges(); } }); });
Szacowany czas lekcji: 10 minut
.lesson-duration-container { background-color: #f0f4f8; /* Szarawe tło dopasowane do reszty strony */ padding: 8px 15px; /* Wewnętrzny odstęp */ border-radius: 8px; /* Zaokrąglone rogi */ font-family: ‘Roboto’, Arial, sans-serif; /* Czcionka Roboto, jeśli dostępna */ font-size: 16px; /* Rozmiar tekstu */ color: #6c757d; /* Ciemny szary kolor tekstu */ display: inline-block; /* Wyświetlanie jako element blokowy */ margin-bottom: 20px; /* Odstęp na dole */ border: none; /* Bez obramowania */ } .lesson-duration-label { font-weight: 700; /* Pogrubienie dla etykiety */ color: #6c757d; /* Ciemny szary kolor dla etykiety */ margin-right: 5px; /* Odstęp od wartości */ } .lesson-duration-value { color: #6c757d; /* Ciemny szary kolor dla wartości */ font-weight: 700; /* Pogrubienie dla wartości */ }

Functions of the Muscular System

The muscular system is fundamental to nearly every activity that the human body performs, from gross physical movements to subtle physiological functions. It consists of skeletalsmooth, and cardiac muscles, each contributing to different aspects of bodily function. The muscular system not only facilitates movement but also supports various other roles, such as maintaining posture, regulating organ function, and generating heat.

Movement and Locomotion

Skeletal muscles are primarily responsible for voluntary movement and locomotion. These muscles, under the control of the somatic nervous system, are attached to bones via tendons. When skeletal muscles contract, they create a pulling force on the skeletal system, resulting in movement of different body parts.

  • Joint Movement: Muscles such as the biceps brachii and triceps brachii work antagonistically to produce flexion and extension at joints. This action facilitates movement in daily activities like lifting, pushing, and pulling.
  • Gross Motor Skills: Large muscle groups like those in the quadriceps and hamstrings are responsible for gross motor activities, including walking, running, and jumping. These coordinated actions involve multiple muscle groups working together in harmony.
  • Fine Motor Skills: Small muscles, such as those found in the fingers and facial region, allow for fine motor control essential for actions like writing, typing, and facial expressions.

Posture and Stability

Maintaining posture is another crucial function of the muscular system. Skeletal muscles work continuously, often in a semi-contracted state known as muscle tone, to keep the body upright and balanced.

  • Core Muscles: Muscles like the erector spinaerectus abdominis, and obliques form the core, providing stability to the spine and assisting in maintaining an upright posture.
  • Antigravity Muscles: Muscles such as the quadriceps and gastrocnemius help prevent the body from collapsing under the influence of gravity by maintaining joint stability during standing.
  • Balance Control: Small adjustments in muscle tension occur constantly to maintain balance and prevent falls, especially when the body is in a stationary position or shifting weight from one foot to the other.

Circulation of Blood

The cardiac muscle located in the heart is responsible for pumping blood throughout the circulatory system, providing tissues with essential oxygen and nutrients.

  • Cardiac Muscle Contractions: The involuntary rhythmic contractions of the cardiac muscle are regulated by the sinoatrial node (SA node), which acts as the natural pacemaker of the heart. These contractions propel blood through the arteries and veins, ensuring adequate circulation.
  • Venous Return Assistance: The muscular system, particularly the skeletal muscles of the legs, aids in venous returnSkeletal muscle contractions help push blood back towards the heart against gravity, particularly during physical activities, which reduces the risk of venous pooling.

Digestion and Organ Function

The smooth muscle found within the walls of hollow organs, such as the stomach, intestines, bladder, and blood vessels, plays a vital role in regulating organ function.

  • Peristalsis: Smooth muscle contractions create a wave-like movement known as peristalsis, which propels food through the digestive tract, aiding in the efficient digestion and absorption of nutrients.
  • Blood Vessel Constriction and Dilation: Smooth muscles surrounding blood vessels regulate vasoconstrictionand vasodilation, which helps maintain blood pressure and directs blood flow to areas of the body that need it most.
  • Sphincter Control: Smooth muscles form sphincters that regulate the passage of substances, such as the lower esophageal sphincter, which controls food entry into the stomach, and the anal sphincter, which manages defecation.

Thermoregulation

The muscular system plays an essential role in thermoregulation, helping to maintain body temperature within a safe range.

  • Shivering: In response to cold, skeletal muscles rapidly contract in a process called shivering, which generates heat to raise body temperature.
  • Heat Production: During muscle activity, ATP is used as a source of energy, and a portion of this energy is lost as heat. This heat is beneficial in maintaining core body temperature, especially during physical exertion.

Respiratory Function

Respiration is facilitated by the muscular system, particularly by skeletal muscles involved in the process of breathing.

  • Diaphragm: The diaphragm is a dome-shaped skeletal muscle that contracts to create a negative pressure within the thoracic cavity, allowing air to enter the lungs. It is the primary muscle responsible for inhalation.
  • Intercostal Muscles: The external and internal intercostal muscles assist in expanding and compressing the rib cage, which aids in both inhalation and exhalation.
  • Accessory Muscles: During periods of increased oxygen demand, such as during exercise, accessory muscles of respiration, including the sternocleidomastoid and scalene muscles, are recruited to enhance lung ventilation.

Reflexes and Protection

Reflexes and Protection

Reflexes are rapid, involuntary responses to stimuli that protect the body from harm. The muscular system is integral to executing these actions, enabling swift movements essential for survival.

  • Withdrawal Reflex: Skeletal muscles contract in response to painful stimuli, pulling the affected body part away to prevent further injury.
  • Corneal Reflex: Orbicularis oculi muscles close the eyelids reflexively to protect the eyes from foreign objects or bright light.
  • Gag Reflex: Pharyngeal muscles contract to prevent choking when the back of the throat is stimulated.
  • Startle Reflex: A whole-body reaction to sudden loud noises or unexpected stimuli, preparing the body for defensive action.
  • Cough Reflex: Respiratory muscles contract to expel irritants or mucus from the airways.
  • Shivering Reflex: Skeletal muscles generate heat through rapid contractions to combat cold and prevent hypothermia.

Glycogen Storage and Energy Reserve

Muscles serve as an important reservoir for glycogen, which can be used to meet energy demands during physical activity.

  • Glycogen StorageSkeletal muscles store significant amounts of glycogen, which can be rapidly converted to glucose to fuel muscle contractions during activities ranging from brief, high-intensity efforts to prolonged endurance exercise.
  • ATP Production: Muscle cells contain specialized organelles called mitochondria, which produce ATP through aerobic and anaerobic metabolic pathways, providing the necessary energy for sustained muscle contraction.

Endocrine Interactions and Metabolic Regulation

Recent research has uncovered that muscles have an endocrine function, releasing myokines—cytokines or peptides—that play roles in metabolic regulation and interaction with other systems.

  • Myokines: When muscles contract, they release myokines, such as irisin, which is involved in the browning of adipose tissue and glucose metabolism. Myokines can also act as anti-inflammatory agents and promote muscle hypertrophy and tissue repair.
  • Insulin Sensitivity: Regular muscle activity improves insulin sensitivity by increasing GLUT4 translocation to the cell surface, allowing greater uptake of glucose by muscle cells, which is crucial for maintaining normal blood sugar levels.

Muscle Recovery and Adaptation

The muscular system exhibits an impressive capacity for adaptation and recovery following exercise or physical stress.

  • Hypertrophy: When muscles are exposed to resistance training or load-bearing activities, hypertrophy occurs, characterized by an increase in muscle fiber size. This adaptation results from increased protein synthesis and enhanced recruitment of satellite cells.
  • Endurance Improvements: With regular aerobic exercise, muscle fibers adapt by increasing the number of mitochondria and enhancing capillary density. This adaptation improves oxidative capacity, allowing muscles to perform for longer durations without fatigue.
  • Rest and Repair: Rest is essential for muscle recovery. During rest periods, microtears in muscle fibers are repaired, leading to increased strength and resilience. Nutrition, particularly adequate protein intake, supports the repair and regeneration of muscle tissues.

Maintenance of Muscular System Health

The health and function of the muscular system can be maintained through proper nutritionexercise, and preventive healthcare.

Nutritional Factors

  • Protein: Adequate protein intake is essential for muscle repair and growth. Proteins provide the building blocks—amino acids—that are necessary for muscle protein synthesis.
  • Vitamins and MineralsCalciummagnesium, and potassium are vital for muscle contraction and relaxation. Vitamin D is also critical for calcium absorption, contributing to muscle function.
  • Hydration: Proper hydration is necessary to maintain electrolyte balance, prevent cramps, and support muscle contraction efficiency.

Lifestyle Factors

  • Regular Exercise: Engaging in both aerobic and resistance training is essential for maintaining muscle mass, enhancing muscle strength, and supporting cardiovascular health. Exercises like weightlifting increase muscle hypertrophy, while activities like swimming and cycling boost endurance.
  • Avoiding Sedentary Lifestyle: Avoiding prolonged periods of inactivity is crucial to prevent muscle atrophy. Regular movement, even through low-intensity activities like walking or stretching, helps maintain muscle tone and functional capacity.
  • Stretching and Flexibility: Consistent stretching improves muscle flexibility, helps prevent injuries, and promotes proper range of motion in the joints. Including stretching before and after workouts aids in maintaining optimal muscle function.

Preventive Healthcare

  • Physical Therapy: Routine physical therapy or assessment by a physical therapist can help identify muscle imbalances, improve mobility, and address injuries before they worsen.
  • Routine Health Screenings: Regular health check-ups and screenings can detect early muscle-related health issues, such as deficiencies or degenerative conditions, allowing for early intervention.
  • Proper Ergonomics: Ensuring correct ergonomic practices in daily activities, such as maintaining proper posture while sitting or lifting objects correctly, reduces the risk of repetitive strain injuries and supports long-term muscle health.

Maintaining the health of the muscular system involves a combination of good nutritionconsistent exercisehydration, and preventive measures to ensure muscles remain strong, resilient, and fully functional throughout life. Exercises like weightlifting increase muscle hypertrophy